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Summary

Numerical solutions of the Euler equations for two-dimensional airfoil flows at low Mach

numbers are compared with analytical solutions for incompressible potential flow. The Euler

solutions were obtained using the computer code ARC2D, which employs the Beam and Warming

implicit approximate factorization algorithm in generalized coordinates. Analytical solutions for

incompressible potential flow were calculated through Joukowsky (cusped trailing edge) and

Karman-Trefftz (finite trailing edge angle) transformations. Effects of free-stream Mach number,

artificial dissipation, and grid clustering are presented. At a free-stream Mach number of 0.05, the

numerical results obtained using a 249 by 49 grid show excellent agreement with the analytical
solutions. _

1. Introduction

Validation of flow solvers is an important component of the computational fluid dynamics

development process. Effects of grid refinement and clustering, numerical dissipation, and

turbulence modeling must be understood and quantified. However, when numerical solutions are

compared with experimental data, difficulties can arise in distinguishing errors associated with

turbulence modeling from those associated with inadequate numerical resolution. Numerical

algorithms for the Euler equations are particularly difficult to validate since these equations

represent inviscid flow and hence cannot be expected to correspond to experimentally measured
flows.

Exact solutions can be obtained for steady, two-dimensional, incompressible potential (i.e.,

irrotational and inviscid) flow about Joukowsky and Karman-Trefftz airfoils using conformal

mappings. The Euler equations reduce to incompressible flow in the limit as the Mach number

approaches zero. Therefore, the exact solutions for the incompressible potential flow about

Joukowsky and Karman-Trefftz airfoils can be used as test cases to validate computer codes for the

Euler equations at low Mach number.

In the present study, numerical solutions of the Euler equations at low Mach numbers for two-

dimensional flow about airfoil sections are compared to exact solutions for incompressible potential

flow. The purpose of the present study is to assess the accuracy of an Euler code at low Mach

number and to investigate the factors affecting the solution. The parameters considered include

artificial dissipation, grid clustering, and Mach number. The numerical solutions are obtained for

inviscid flow at low Mach number in order to allow comparison with the exact incompressible

potential flow cases. The ability of a transonic airfoil code to accurately calculate essentially

incompressible flows is a useful feature in itself. Furthermore, it is hoped that some of the



conclusionsregardingthe effects of grid clusteringand artificial dissipationcan be extendedto
higherMachnumbersandto viscousflows.

It is well known that theEuler equationsbecomestiff at very low Mach numbers(ref. 1). The
stiffnessof the system,which is dueto the largeratio betweenthe soundspeedandtheconvective
speed,canadverselyaffectboth theaccuracyandtheefficiency of time-marchingmethodsfor the
Euler equations. The present study investigatesonly the accuracy of the low-Mach-number
solutionsof theEulerequations.Noattempthasbeenmadeto investigatetheeffectof the low Mach
numberon the convergencerate. In order to improve the convergencerate of time-marching
methodsfor theEuler equationsat low Machnumber,theequationscanbepreconditioned(refs. 1,
2).However,this approachis only usefulfor steady-statecomputations,astheresultingsystemis no
longertime-accurate.

2. Euler Equations

Inviscid compressible flow is governed by the Euler equations. In two dimensions, this system

of equations consists of the continuity equation, two momentum e_tuations, and the energy equation.
The vector of conservative dependent variables is [p, pu, pv, e ]', where p "is the local density of

the gas, u and v are Cartesian velocity components, and e is the total energy. In strong

conservation-law form, the Euler equations are given by

_tQ + _xE + DyE = 0 (2.1)

where

[ ul In] [0v1Q= E= pu_ + p F= p uv

[pv] / puvl IpvZ+pl (2.2)
[u(e+p)] [v(e+p)J

For an ideal gas, the pressure is given by the following equation of state:

p = (y- 1)[e - i/2p(u2 + v2)] (2.3)

where 7, the ratio of specific heats, is generally taken as 1.4.

The dependent variables can be nondimensionalized as follows:

P=--P--" fi_ u _ = v __ e (2.4)
p** a _ a** p._a_

where a is the sound speed, given by a 2 ='_o/p, and the subscript 0,, denotes free-stream values.

With this nondimensionalization, the system of equations is nonsingular in the limit as the Mach

number approaches zero.

In Cartesian coordinates, the flux Jacobian matrices A =_E/3Q and B = 3F/_Q have the

following eigenvalues:



hA = [U, U, u+a, u-a] AB = [v, v, v+a, v-a] (2.5)

At very low Mach numbers, the ratio of the eigenvalues involving the sound speed to those

involving only the velocity becomes large, and consequently the system becomes stiff.

In irrotational flow, a velocity potential function can be defined by

u = _x v = _y (2.6)

The continuity equation for incompressible irrotational flow becomes

_xx + _yy = 0 (2.7)

The pressure is given by the incompressible Bernoulli equation:

p -t- l/2p_(g2 + V 2) ----p,,, -t- 1/2p_(U2 q- V 2 ) (2.8)

In a uniform onset flow, solutions to the Euler equations with no shocks or shed vorticity are

irrotational and consequently approach the incompressible potential flow solutions as the Mach

number approaches zero.

3. Numerical Solution of the Euler Equations

The numerical solutions of the Euler equations presented in this report were obtained using the

transonic airfoil code ARC2D. This code employs the Beam and Warming implicit approximate-

factorization algorithm in generalized coordinates. A number of options are available in ARC2D

with regard to the time-marching method, the artificial dissipation, and reduced forms of the implicit

algorithm. Since time-accurate calculations were not required, the present computations were

performed using the first-order implicit Euler time-marching method and the diagonal form of the

algorithm. Furthermore, since no shocks are present at the low free-stream Mach numbers studied, a

nonlinear fourth-order artificial dissipation model was used. The algorithms utilized in ARC2D are

described in detail by Pulliam (ref. 3) and are thus only briefly summarized here.

ARC2D solves the Euler equations in generalized curvilinear coordinates. Therefore a procedure

is required to produce computational grids about arbitrary two-dimensional airfoils. The grids

employed in the present computations were generated using the hyperbolic grid generator described

by Barth et al. (ref. 4).

The generalized curvilinear coordinate transformation is given by

x = t _ = _(x,y,t) 1"1= "q(x,y,t) (3.1)

The grid spacing is uniform and of unit length in the curvilinear computational space. In generalized

curvilinear coordinates, the strong conservation-law form of the Euler equations becomes

^0xQ+0 6 +0,q =0 (3.2)

where



pU

=j-1 ouU + xp ]
OvU+ Gyp I

U(e +p)-_,pJ

_- = j-1 puV + rlxP

9vV + rlyp I

V(e +p) - rl,pJ

U and V are the contravariant velocity components defined as

U = _t + _,u + _yv V = tit + rb, u + rbv

and J is the metric Jacobian, defined as

J = (x{y.q - x.qy{) -1

(3.3)

(3.4)

(3.5)

Application of the implicit Euler time-marching method to the Euler equations in generalized

coordinates gives
^n+l ^n+l

AQn+h(E_ +F_ )=0 (3.6)

where AQ = Q - , = (nAt), and h = At. Introduction of local time linearizations and

approximate factorization leads to the following implicit algorithm:

(I + hb_A ")(I + hb*q/_ n)AQ" = -h (b_/_" + bn_"l) =/?" (3.7)

where ,4 = 3/_/3Q and/_ = 3/_/_Q are the flux Jacobians in generalized coordinates.

The partial derivative operators 3_ and 0n are approximated using second-order centered
differences. Since the mesh spacing in the computational space is uniform and of unit length, the

difference operators can be written as

Uj+I, k -- Uj_I, k

5_uj.k = 2

where

_qUj, k -- Uj, k+l -- Uj, k_ 12 (3.8)

u ,k- u q=k) (3.9)

Linear stability analysis can be used to show that centered differences are nondissipative. The Euler

equations also contain no mechanism for dissipation since they represent inviscid flow. However,

since the difference operator at a given point involves only the adjacent points, centered differences

lead to an odd-even decoupling of grid points. Numerical boundary conditions can excite the odd-

even decoupling and the computations can become unstable (ref. 5). The presence of shocks can

also lead to instabilities. These instabilities can be controlled using artificial dissipation.

The nonlinear dissipation model developed by Jameson et al. (ref. 6), which combines second-

and fourth-difference dissipation, was employed in the present computations. The second-difference

dissipation is required only near shocks and consequently was not utilized. The fourth-difference

term in the _ direction is (ref. 3):



= -1 -1
D[ 4) -V_(_j+t,k Jj+l,k + _),k Jj.k ) e_4,_A_ V_A_Qj, k (3.10)

where the one-sided difference operators are defined as

V_Uj, k = Uj, k -- Uj_I, k A_Uj, k "- Uj+I, k -- Uj, k (3.1 1)

The spectral radius of A, oj, k, is given by

_),k I U I + a (_xz ' _2,,,_= + _y) (3.12)

The coefficient e_42 is equal to r,,4At where _ is user-specified. An analogous term is used in the r I

direction. The dissipation is added to the explicit part of the algorithm as follows:

n =-h (Sg/_ n + _SrlPn - D_ 4) - D (4)) (3.13)

A corresponding implicit operator is obtained by lagging the spectral radius term, thereby

linearizing the dissipation. The implicit fourth-difference dissipation operator in the g direction is

Dil_ =-V_(Oj+l,k Jj+l,k-_ + o_,k j j),,) eJ4_ A_V_A_ J (3.14)

The operator in the rl direction has an analogous form. The implicit algorithm can thus be written as

(I + h_An - hDi l_)(l + h_rlB n - hDi I,q)A0 n = /_n (3.15)

Use of the implicit fourth-difference dissipation operator in the implicit algorithm given by equation

(3.7) leads to a block pentadiagonal system of equations. The diagonal form of the algorithm

described by Pulliam (ref. 3) reduces the system to scalar pentadiagonal form. The steady-state

solution is unaffected by the diagonalization.

4. Joukowsky and Karman-Trefftz Transformations

The Joukowsky and Karman-Trefftz transformations are conformal mappings which map a

circle in one complex plane to an airfoil in another complex plane. Since the complex potential is

known about a circle with arbitrary circulation in a uniform onset flow, the potential flow velocity

distributions about Joukowsky and Karman-Trefftz airfoils can be determined analytically.

Joukowsky airfoils are characterized by cusped trailing edges while Karman-Trefftz airfoils have

finite trailing edge angles. The Joukowsky and Karman-Trefftz transformations are presented in

numerous texts (for example, ref. 7) and are thus reviewed only briefly here.

In two-dimensional incompressible potential flow, the velocity components u and v are related to

the potential function • and the stream function W by the following relations:

_x = u = Wy _y = v =-W_ (4.1)

The complex potential is defined as

F (z) = _(x,y) + iW(x,y) (4.2)

where z = x + iy. The complex velocity is then given by



W (z) - u (x,y) - iv (x,y) = F" (z) (4.3)

We now consider a transformation which maps one complex plane, the _-plane where

= {+ ir 1, to another complex plane, the z-plane. The flow in the _-plane satisfies Laplace's

equation (eq. (2.7)) as well as certain prescribed boundary conditions. The flow in the z-plane also

satisfies the differential equation and the boundary conditions except at critical points of the

transformation. Therefore, simple geometries with known solutions in the _-plane can be mapped to

complicated geometries in the z-plane. The complex velocity in the z-plane is then given by

W [z (_)] = _ (4.4)
dz/d

where liz(_) is the known complex velocity in the _-plane. At critical points of the transformation,

i.e., where dz/d_ vanishes, the complex velocity in the z-plane becomes infinite unless the complex

velocity in the _-plane is zero.

The Joukowsky and the Karman-Trefftz transformations both map a circle in the _-plane to an

airfoil in the z-plane. Figure 1 depicts a circle centered at _ = g in the _-plane. The circle is

described by the complex function

= I.t + ae io (4.5)

The radius a is chosen such that _T = 1 as shown. The free-stream velocity vector V** has

magnitude V_ and is inclined at an angle 0_ to the k-axis. The complex velocity for the flow past the

circle in the _-plane is given by

_V(_) = V_e -i_ + i F 1 V_oa2ei_ 1 (4.6)
2_ _-g (_-lt) 2

where the circulation is defined positive clockwise and has arbitrary magnitude F.

In order to map the circle in the _-plane to an airfoil with a sharp trailing edge in the z-plane, the

transformation z = z(_) must have a critical point at the trailing edge point _ = _T. The Kutta

condition requires that the complex velocity in the z-plane remain finite at the trailing edge.

Therefore, the complex velocity in the _-plane must vanish at _ = _T, i.e.,

Ii,'(_ = _T) = 0 (4.7)

This condition determines the magnitude of the circulation as

F = 4rtaV**sin(ot + 13) (4.8)

where 13is defined in figure 1. Substituting equations (4.5) and (4.8) into equation (4.6) gives the

following expression for the complex velocity distribution on the circle in the _-plane:

liz(_) = i2V=[sin(ot + 13)- sin(o_- 0)le -i° (4.9)

The Joukowsky transformation is given by



z(;)=; + -(
Since we have chosen the radius of the circle a such that _T = 1,

becomes

the transformation

(4.10)

function

1 (4.11)
z(;)=; +-(

The derivative of the transformation function is thus

dz 1
- 1 (4.12)

a4 4 2

The camber and thickness of the Joukowsky airfoil are determined by It, the location of the center of

the circle in the _-plane. The velocity distribution on the airfoil in the z-plane is given by equation

(4.4).

The airfoil sections obtained using the Joukowsky transformation have cusped trailing edges. In

order to generate a profile with a finite trailing edge angle, the Karman-Trefftz transformation can be

used. With _T = 1, the Karman-Trefftz transformation can be written as

z - n _ (4 - 1)n (4.13)

z +n (_+ 1)"

The parameter n determines the trailing edge angle 't as follows:

x = _(2 - n) (4.14)

Equation (4.13) can be manipulated to give

z=n I (_+l)n+(_-l)n] (4.15)(4 + 1) n - (4 - 1)"

Therefore the derivative of the transformation is

dz 4n2(_ + 1)n-l(_ - 1)n-1 (4.16)

= [(4 + 1)n-(4- 1)"12

The velocity distribution on the airfoil in the z-plane is again given by equation (4.4).

5. Results and Discussion

The present investigations have been carried out using a Joukowsky airfoil and a Karman-

Trefftz airfoil. Both airfoils were generated from a circle centered at It = (-0.1,0.1). The parameter

n in the Karman-Trefftz transformation was chosen such that the trailing edge angle '_ is 10°. The

resulting Karman-Trefftz airfoil has a thickness-to-chord ratio of roughly 15%, while the thickness-

to-chord ratio of the Joukowsky section is roughly 12%. The airfoils are shown in figure 2. On all

figures the coordinates x and y are nondimensional, i.e., they have been scaled by the chord length.



Theanalyticallift coefficientfor theKarman-Trefftzairfoil at zeroincidencein incompressibleflow
is equal to 0.6402. The correspondingvalue for the Joukowskyairfoil is 0.6231. All of the
computationalresultspresentedareat zeroincidence.

Thegridsemployedare "C" typegrids with 249pointsin the_ direction (aroundtheairfoil) and
49 pointsin the11direction (normal to theairfoil). Thedistanceto theouterboundaryis i0 chord
lengths. The far-field circulation correction describedin reference 3 was used in all of the
computations.Grid points areclusteredin the_ directionat the leadingandtrailing edges.In the11
direction,grid pointsareclusteredtowardthebody. Theminimumgrid spacingin the_ direction is
equalto theminimum grid spacingin the1"idirection. Two different gridsweregeneratedfor each
airfoil section. On onegrid the minimum point spacingis 0.001of the airfoil chord while on the
secondgrid it is 0.005of thechord.Thesegrids will bereferredto astheclusteredgrid andtheless
clusteredgrid, respectively.The two grids usedfor the computationson the Karman-Trefftzairfoil
areshownin figures3a-cand4a-c. Thetwo gridsgeneratedabouttheJoukowskyairfoil aresimilar.
Unlessotherwisespecified,theresultsshownin thefigureswerecomputedusingtheclusteredgrid.

Lift and quarter-chordpitching momentcoefficientscomputedusing the clusteredgrid on the
Karman-Trefftzairfoil aredisplayedin figures5 and6. Also shownare the predictionsof linear
theory(thePrandtl-Glauertlaw),which gives

Cto

]3

where

Cm0

c,,, = (5.1)

= (1 - M 2)½ (5.2)

and the subscript 0 refers to incompressible flow. Compared to the linear theory, the lift coefficient

and the magnitude of the moment coefficient are slightly overestimated by the computations, even at

a free-stream Mach number of 0.05. At such a low free-stream Mach number, the effect of

compressibility is virtually negligible, as ]3= 0.9987.

Figures 7a-c show the surface pressure distribution on the Karman-Trefftz airfoil at Moo = 0.05

computed using the clustered grid, in comparison with the analytical result for incompressible flow.

The only discrepancy of any significance occurs near the trailing edge, where the loading is slightly

overestimated. The computed pressure distribution for the Joukowsky airfoil, shown in figures 8a

and 8b, is in slightly better agreement with the theory. Since the Joukowsky airfoil has a cusped

trailing edge, the velocity at the trailing edge given by the analytical solution is nonzero. The finite

trailing edge angle which characterizes the Karman-Trefftz airfoil produces a stagnation point at the

trailing edge. Consequently the pressure gradients near the trailing edge are much higher on the

Karman-Trefftz airfoil. The pressure gradients near the trailing edge of the Joukowsky airfoil

correspond more closely to those in a viscous flow. The corresponding pressure distributions

computed using the less clustered grid are displayed in figures 9a-c and 10a-c. The discrepancies

between the theory and the computations are greatly increased.

In subcritical inviscid flow, the drag on an airfoil section is zero. For inviscid flow, the drag is

calculated in ARC2D by numerically integrating the appropriate component of the pressure force



aboutthe airfoil. This procedureis very sensitiveto errors in the computedpressuredistribution
sincerelatively large pres_re forcesmust cancel to producezero drag.Therefore,in subcritical
inviscid flow, thedragcoefficientis ausefulmeasureof theaccuracyof acomputedflow field.

The pressuredistributionscomputedusingthelessclusteredgrid displayedin figures9 and 10
producedrag coefficientsgreaterthan0.001. The drag coefficientscomputedusing the clustered
grid are generally below 0.0003, dependingon the amount of artificial dissipation used. The
dependenceof thedragcoefficientscomputedatM** = 0.05 on the artificial dissipation is displayed

in figure 11. The dissipation parameter shown in the figures is equal to 64 times the artificial

dissipation coefficient r,4, which is defined following equation (3.12). Therefore a value of the

dissipation parameter shown on the figures equal to 0.64 corresponds to r,.4 = 0.01, which is the

typical value given by Pulliam (ref. 3). Figure 11 shows that the computed drag coefficient at

M_ = 0.05 is very sensitive to the artificial dissipation coefficient. The value of _¢4 which produces

the minimum drag coefficient is 0.00125, far less than the typical value. At M_ = 0.4, the computed

drag coefficient is much less sensitive to the value of the dissipation coefficient, as shown in figure

12. Although a value of r,4 equal to 0.0025 minimizes the drag at this Mach number, the drag

coefficient computed using the typical value of 0.01 is not significantly higher.

The variation of the computed drag coefficient with free-stream Mach number is shown in figure

13. In each case the value of the artificial dissipation coefficient which minimizes the drag was

used. The computed drag coefficient increases with decreasing Mach number. This suggests that

the solution accuracy is somewhat degraded at very low Mach numbers.

The odd-even decoupling of grid points characteristic of centered-difference schemes is

displayed in figure 14, which shows the coefficient of pressure contours on the Karman-Trefftz

airfoil at M_, =0.05 computed using a value of the dissipation coefficient r,4 equal to 0.00125.

Increasing v,4 to 0.01 eliminates the odd-even decoupling entirely, as shown in figure 15, but

produces a higher drag coefficient. Figures 16a and 16b show that the surface pressure distribution is

computed more accurately using 1(4 = 0.00125. Increasing the value of _¢4 leads to oscillations in the

surface pressure distribution near the trailing edge.

The entropy field is another useful measure of the accuracy of a numerical solution. In

subcritical inviscid flow, no entropy should be generated. Figures 17 and 18 show the entropy, s,

generated on the surface of the Karman-Trefftz airfoil at M_ = 0.05 with _ equal to 0.00125 and

0.01, respectively. The higher value of the dissipation coefficient leads to an increase in entropy

generation. This is consistent with the increased drag computed using i¢4 = 0.01. Figure 19 shows

that the less clustered grid leads to considerably increased entropy levels, again consistent with the

high value of drag computed for this case. Hence, the entropy field is a useful error measure for grid
assessment.

Finally, a 497 by 97 grid was generated about the Karman-Trefftz airfoil. The minimum grid

spacing in both the _ and rl directions was reduced to one half of the minimum grid spacing on the

clustered 249 by 49 grid, i.e., a minimum grid spacing of 0.0005 of the chord was used. Note that

this grid is not formally a factor-of-two refinement of the clustered 249 by 49 grid, as the same

relative point distribution has not been maintained. Using this refined grid, the drag coefficient on



the Karman-Trefftz airfoil at Moo = 0.05 computed with _c4 = 0.00125 is reduced to a value below

0.0001, i.e, the computed drag is reduced by a factor of 3.2 compared to the drag computed using

the clustered 249 by 49 grid. The error obtained by comparing the computed lift coefficient with the

value given by linear theory at M= = 0.05 is reduced from 0.5% to 0.4% using the refined grid. The

error reduction in the computed pitching moment coefficient is similar.

6. Conclusions

Numerical solutions of the Euler equations for two-dimensional airfoil flows at low Mach

numbers have been compared to analytical solutions for incompressible potential flow obtained

using conformal mapping theory. The Euler solutions were obtained using the computer code

ARC2D, which employs the Beam and Warming approximate factorization algorithm in generalized

coordinates. Based on the comparisons, the following conclusions can be drawn:

1. The Beam and Warming algorithm can be used to compute accurate solutions to the Euler

equations at free-stream Mach numbers down to 0.05. At such a low Mach number, the flow

is virtually incompressible.

2. Solution accuracy can be greatly degraded if the numerical grid is insufficiently clustered in

appropriate regions.

3. Solution accuracy is somewhat degraded at Mach numbers below 0.2 and the solutions are

sensitive to the amount of artificial dissipation used. As the Mach number is increased, the

influence of the artificial dissipation level is reduced.

4. Both the drag coefficient and the entropy field are useful measures of the accuracy of a

computed solution in subcritical inviscid flow. The entropy field is particularly useful for grid

assessment.
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Figure 7.- Computational and analytical surface pressure distributions, Karman-Trefftz airfoil, clustered

grid (a) On entire airfoil, (b) Near trailing edge, (c) Near leading edge.
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Figure 8.- Computational and analytical surface pressure distributions, Joukowsky airfoil, clustered grid
(a) On entire airfoil, (b) Near trailing edge.
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Figure 9.- Computational and analytical surface pressure distributions, Karman-Trefftz airfoil, less
clustered grid (a) On entire airfoil, (b) Near trailing edge, (c) Near leading edge.
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Figure 10.- Computational and analytical surface pressure distributions, Joukowsky airfoil, less
clustered grid (a) On entire airfoil, (b) Near trailing edge, (c) Near leading edge.
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Figure 11.- Variation of computed drag coefficient with artificial dissipation coefficient, M_, = 0.05.
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Figure 12.- Variation of computed drag coefficient with artificial dissipation coefficient, Karman-
Trefftz airfoil.
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Figure 13.- Variation of computed drag coefficient with free-stream Mach number, Karman-Trefftz
airfoil.
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Figure 14.- Coefficient of pressure contours, Karman-Trefftz airfoil, Moo = 0.05, v-4 = 0.00125.
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Figure 15.- Coefficient of pressure contours, Karman-Trefftz airfoil, Moo = 0.05, _ = 0.01.
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Figure 16.- Computational and analytical surface pressure distributions, Karman-Trefftz airfoil,
Moo = 0.05, near (a) Trailing edge, (b) Leading edge.

22



2O

'9
O
w,-

¢,¢]

10

-10

-20

0 .2 .4 .6 .8" 1.0

X

Figure 17.- Computed surface entropy distribution, Karman-Trefftz airfoil, Moo = 0.05, r,.4= 0.00125.
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Figure 18.- Computed surface entropy distribution, Karman-Trefftz airfoil, Moo = 0.05, r.4 = 0.01.
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Figure 19.- Computed surface entropy distribution, Karman-Trefftz airfoil, Moo = 0.05, v_4= 0.00125,
less clustered grid.
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